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1. Introduction
Most biological transformations are facilited by a special
class of proteins, called enzymes, that are able to catalyze
biochemical reactions that could not readily occur without
them.1 Their most remarkable properties are their ability
to catalyze reactions under mild conditions (room tem-
perature, atmospheric pressure, etc.), their high kinetic
rates, and their high substrate specificities. Understanding
how enzymes work is one of the central goals of contem-
porary biochemical research. Ultimately, this will yield a
wide range of applications, ranging from the development
of new drugs to the design of new protein-based catalysts.

Computational chemistry can play a major role in the
elucidation of enzymatic reactivity because it gives mo-
lecular-level insights into enzyme catalysis which are
difficult to obtain by other means. Verification of a
proposed catalytic mechanism requires the determination
of the free energy cost of different possible reaction paths
through the characterization of the different transition and
intermediate states for all possible reaction paths. These
types of studies result in the making and breaking of
bonds, which requires the use of quantum mechanical
methods, either implicitly or explicitly (e.g., via incorpo-
ration of a gas-phase potential into a force field method2-5).

The most accurate description of an enzymatic system,
composed of the enzyme, its subtrate(s), its required
cofactor(s), and the solvent surrounding it, in theory, could
be achieved by using long-time quantum molecular
dynamics simulations, i.e., through the solution of the
time-dependent Schrödinger equation on the complete
system.6 However, this goal is far from being realized, due
to conceptual and computational bottlenecks. Thus, one
is faced with making approximations in order to obtain
the most accurate description of the biochemical system
of interest. Until recently, theoretical studies of enzymatic
reactivity have been carried out by considering the most
essential atoms of the active site and substrate and then
examining the reactivity of this model system in the gas
phase or in a continuum solvent environment.7,8 These
studies can give qualitative insight into the intrinsic
reactivity of an enzyme, but they cannot explain, by
themselves, enzyme specifity or the role of the microsol-
vation environment of the enzyme. In light of this,
researchers have developed new methodologies that, in
principle, can give an accurate description of the influence
of an enzyme on a biochemical reaction. Among these,
we include the empirical valence bond (EVB) method from
Warshel and co-workers9,10 and the work derived from it
by Hwang and co-workers;11,12 the multiconfigurational
molecular dynamics with quantum transitions (MC-
MDQT) method developed by Hammes-Schiffer and co-
workers;13,14 the quantum-classical molecular dynamics
method of McCammon and co-workers;15,16 the density
matrix evolution (DME) method of Berendsen and
Mavri;17,18 the ONIOM method of Morokuma and co-
workers;19,20 and the effective fragment potential (EFP)
method of Stevens and co-workers.21,22

However, the most widely used method of the past
decade has been the combined quantum mechanical/
molecular mechanical (QM/MM) method.23-27 Its basic
strategy is quite simple in concept: it is based on the fact
that, in most enzymes, the reactive part is limited to a
small number of atoms (an active-site subsystem). This
“subsystem”, which undergoes most of the electronic
changes associated with chemical activity, is described by
quantum mechanics (QM), while the rest of the system,
which does not require the making or the breaking of
bonds, can be represented using a molecular mechanics
(MM) force field. The resulting coupling of QM and MM
descriptions provides a suitable potential that can model
the reactivity of a wide range of complex systems.

Because QM/MM methods are quite easy to imple-
ment, they have been widely used to study the reactivity
of large systems. One of the first and main application
areas has been the study of solvation and reactivity of
small molecules in condensed phases (see ref 26 for a
review), but other recent application areas include studies
of surface reactivity,28 zeolites,29 and crystal formation.30,31

In this Account, we will exclusively focus on the use of
combined QM/MM methods to study the reactivity of
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enzymes. Due to the singular nature of these systems, the
enzyme itself must be partitioned into two subsystems,
one described by an appropriate QM method, the other
by a MM force field. The frontier between these two
regions, as a result, requires special attention because
covalent bonds form the demarcation between them. In
the following sections, we will briefly survey the different
QM/MM methodologies that have been developed to
properly treat the interactions between QM and MM
regions in large biomolecular systems. Then we will
present examples of applications of the combined QM/
MM approach to the study of enzymatic reactivity.

2. The Quantum Mechanical/Molecular
Mechanical Method
2.1. Genesis of the QM/MM Method. In 1976, Warshel and
Levitt published the first article that described the basic
QM/MM approach.23 To study the catalytic mechanism
of lysozyme, they presented a way in which to represent
the complete enzyme-substrate complex together with
the surrounding solvent within a combined QM/MM
formalism. All of the basic concepts of the QM/MM
method were introduced in this publication: the parti-
tioning of the system, the partitioning of the potential
energy function, and the evaluation of the interactions
between the QM and MM parts. In retrospect, this paper
was clearly ahead of its time.

Ten years after this initial article, Singh and Kollman
published a paper24 that described the use of a combined
ab initio QM/MM method applied to the CH3Cl + Cl-

exchange reaction in solution (SN2) and the gas-phase
protonation of polyethers. They introduced the notion of
“junction dummy atoms” to saturate the free valencies
of the QM atoms linked to MM atoms.

However, current interest in the QM/MM method was
largely stimulated by a recent article by Field, Bash, and
Karplus.25 In this study, they examined in detail the
strengths and weaknesses of the combined QM/MM
approach relative to full quantum mechanical or full
molecular mechanical calculations. In this paper, they
presented the concept of “link atoms”, which are analo-
gous to the junction dummy atoms of Singh and Koll-
man.

2.2. Common Methodology. Most of the QM/MM
papers published since the work of Field et al. share a
common methodological approach. The system of interest
is partitioned into two subsystems (see Figure 1): one
(QM) contains a small number of atoms and is described
by quantum mechanics and the other (MM), which
represents the rest of the system, is described by a suitable
force field.

The Hamiltonian of the whole system can be written
as follows:

where HQM is a QM Hamiltonian, HMM is an empirical force
field, and HQM/MM is the Hamiltonian that describes the
interactions between the QM and MM regions.

The total energy of the system can likewise be divided
into three component parts:

In principle, many levels of accuracy can be used for
the QM region; however, only a small number of QM/
MM studies of enzymatic systems have made use of either
density functional theory (DFT) or ab initio Hartree-Fock
(HF) approaches.32,33 Most have used semiempirical ap-
proaches due to the considerable sizes of the QM region.
On the other hand, similar restrictions do not apply to
the empirical Hamiltonian, so that “typical” force fields
(AMBER,34 CHARMm,35,36 or GROMOS37,38) have been
utilized.

One of the key aspects of the QM/MM method is, of
course, the interactions between the QM and MM regions.
There are two types of interactions: First, when one deals
with large biological molecules, the interface between the
QM and MM region involves covalent bonds and as a
result requires special treatment. Because this aspect of
the problem differentiates existing QM/MM approaches,
it will be discussed in detail in the following section.
Second, to take into account the influence of the enzyme
and the surrounding solvent on the QM region, electro-
static and van der Waals interactions between the QM and
MM regions must be included. Usually, this is done by
adding to the QM Hamiltonian the interactions between
the electrons and nuclei of the QM part with the point
charges of the MM part.25 This describes the polarization
of the QM wave function by its MM environment but does
not incorporate charge transfer between QM and MM
regions.39 In some cases, the MM charges are not directly
included into the QM Hamiltonian, but they are taken into
account via purely classical electrostatic interactions.19,40

However, it is our opinion that this approach does not
properly account for the polarization of the MM region
on the QM region. Consequently, the effect of the enzy-
matic environment is not fully accounted for when using
a purely classical QM/MM interaction model.

H ) HQM + HMM + HQM/MM (1)

FIGURE 1. Division of the molecular system within a combined
quantum mechanical/molecular mechanical calculation. The quan-
tum mechanical (QM) region is surrounded by a molecular mechan-
ical (MM) region and then by a boundary region (BR).

E ) EQM + EMM + EQM/MM (2)
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We also note that, when using semiempirical methods,
electrostatic integrals describing the interactions between
the MM charges with the QM electrons must be cor-
rected.41

2.3. Different Approaches. Link Atom. When dealing
with large systems such as enzymes, it is important to
properly treat the covalent bonds that exist at the border
between the QM and MM regions. Different solutions to
this problem have been described. The most common
method is the so-called “link atom” method. Introduced
by Singh and Kollman and Field et al. in their initial
papers, it consists of adding QM hydrogen atoms in order
to fill the free valencies of the QM atoms that are
connected to the atoms described by MM. These dummy
atoms are treated explicitly during the QM calculations
but do not interact with the MM atoms. However, whether
these link atoms should or should not interact by means
of Coulombic interactions is still open to debate.41-43

Furthermore, the energy and the gradient are not well-
defined because they include dummy atoms whose con-
tributions are not constant. This approach is not ideal,
but it does allow for a clear delineation between the QM
and MM regions of a biological molecule. Moreover, this
is a fairly reliable approach, provided that the frontier
bonds are placed sufficiently far away from the reactive
atoms. As a result, many application studies have been
conducted using the “link atom” QM/MM approach.44-52

Local Self-Consistent Field. To avoid the use of “link
atoms”, Rivail and co-workers have developed the local
self-consistent field method (LSCF),53-55 which uses a
combination of hybrid and atomic orbitals to represent
the quantum subsystem. It expands the initial idea of
Warshel and Levitt to use hybrid orbitals to describe the
covalent bonds at the border between the QM and MM
regions, but unlike their approach, the LSCF method
uses a basis set of atomic orbitals instead of orthogonal
valence hybrid orbitals to describe the rest of the QM
region.

In the LSCF formalism, the two electrons of the frontier
bond are described by a strictly localized bond orbital
(SLBO). Provided that this covalent bond is far enough
from the chemical reaction center, its electronic properties
can be considered as constant along the reaction path.
Using model systems, it is possible to define the nature
of this SLBO in the QM atomic orbital basis set. By freezing
this representation, the rest of the molecular orbitals,
which are orthogonal to the SLBO, can then be generated
by a local self-consistent calculation.53 This approach has
been developed at the semiempirical and ab initio HF
levels and has been successfully applied to organic and
biochemical systems.56-60

Recently, a related approach has been described by Gao
et al. in their generalized hybrid orbital (GHO) method.61

It also uses the concept of hybrid orbitals localized on the
frontier atoms, but in this case these orbitals are divided
into two sets of auxiliary and active orbitals. The latter
set is included in the SCF calculation, while the former
generates an effective core potential for the boundary
atom. As opposed to the LSCF approach, the GHO method

requires a reparametrization of the semiempirical Hamil-
tonian for the boundary atoms.

Connection Atom. Another way of avoiding the use of
link atoms is the new “connection atom” method devel-
oped by Thiel and co-workers.62 In this approach, the MM
atoms at the border between the QM and MM regions
are described as a QM methyl group with a free sp3

valence. In other words, a MM atom, which is defined as
a “connection atom”, enters into the SCF computation
as an atom having one electron and one orbital, which
mimics the behavior of the free sp3 orbital of the methyl
radical. This elegant approach obviates the need for
dummy atoms and, hence, provides a consistent definition
of the energy of the system. Connection atoms have been
parametrized to be compatible with the popular semiem-
pirical methods such as AM1 and PM3. However, gener-
alization of this method to encompass ab initio HF
calculation has not been reported.

In summary, several QM/MM methods have been
recently developed in order to model the structure and
reactivity of large biological systems. These different
methods share common features as well as different ways
of solving the border problem between the QM and MM
regions. However, at the time we are writing this Account,
no study has been yet published to compare these
different QM/MM methods, and, although we are aware
of some ongoing research,63,64 it is still unclear whether
any of the QM/MM methods mentioned above are more
reliable than any of the others.

3. Examples of QM/MM Studies on Enzymes
In this section, we present some recent examples of QM/
MM studies on enzymes which have used different QM/
MM boundary region representations. These examples are
meant to show the reader how powerful the QM/MM
approach is when applied to the study of enzymatic
reactivity.

All of the enzymes described in the following examples
have a zinc atom (Zn2+) at their catalytic sites. Modeling
the behavior of a zinc atom and its ligands is a challenging
task when using a pure MM force field.65-67 Indeed, its
large positive charge can result in substantial polarization
effects, local geometric changes, and coordination number
changes.65 QM/MM methods solve these problems by
treating the metal ion and its ligands quantum mechani-
cally while treating the surrounding environment with a
force field. In this approach, polarization of the metal ion
and its ligands can be effectively dealt with since it is
explicitly included in the QM/MM model. Furthermore,
the dynamics of the coordination sphere is included as
well as the ability to undergo coordination changes.

In the following, we first present a QM/MM molecular
dynamics simulation of human carbonic anhydrase II
(HCAII), which demonstrates the need for a quantum
representation of the active site of this enzyme. In the
second example, we present a study of peptide hydrolysis
by thermolysin, which demonstrates the applicability of
the QM/MM approach to reactivity.

QM/MM Methodologies Applied to Biomolecular Systems Monard and Merz
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3.1. QM/MM Molecular Dynamics of HCAII. HCAII,
one of seven isozymes of the zinc metalloprotein human
carbonic anhydrase (HCA), is a 260-residue protein with
a mass of ∼29 kDa. A single zinc atom is located in the
enzyme active site and is necessary for catalytic activity.
The active site itself lies at the bottom of a deep cavity
(15 Å deep) in the protein, which is readily accessible to
solvent. The active site cavity is divided into hydrophobic
and hydrophilic regions, with a network of hydrogen-
bonded water molecules connecting the active-site region
and the surrounding solvent environment. The catalyti-
cally necessary zinc atom lies at the bottom of the active-
site cleft and is tetrahedrally coordinated by three histidine
residues (His-94, -96, and -119) and a fourth ligand, whose
identity is pH dependent. At high pH (>8), the fourth
ligand is an hydroxide ion, while at acidic pH the fourth
coordination site is occupied by a water molecule.

To evaluate the capabilities of a coupled QM/MM
method and to examine the structure and dynamic
properties of the HCAII active site, Hartsough and Merz
have simulated the dynamics of this system using a
combined QM/MM model.68 They used the PM3 semiem-

pirical Hamiltonian to describe the side chains of His-94,
His-96, His-119, the catalytic zinc atom, and the fourth
ligand (either water or hydroxide). The AMBER united
atom model represented the remainder of the enzyme,
and TIP3P water molecules were used to represent the
solvent within 15 Å of the zinc atom. Junctions between
the QM and MM regions were made between C-â and C-γ
of the His residues using the “link atom” approach of
Field, Bash, and Karplus. MD simulations were carried out
on both forms (water and hydroxide) of HCAII. A 15-Å
sphere was defined around the active-site zinc atom, and
only residues within this sphere as well as the cap water
molecules were allowed to move during the MD simula-
tions. Each MD simulation consisted of 100 ps.

In what we believe to be the first reported QM/MM
molecular dynamics simulations on a protein, Hartsough
and Merz demonstrated that QM and MM methodologies
are able to provide a reasonable depiction of active-site
geometry and dynamics. Moreover, they showed that
using a full MM description of a zinc protein with fixed
point charges can lead to an inaccurate model. In par-
ticular, they reported the variation of the atomic charges

FIGURE 2. Fluctuations of the charge on the hydrogen atom bound
to the C-δ2 atom in His-119.

FIGURE 3. Fluctuations of the charge on the C-ε1 atom in His-94.

FIGURE 4. Fluctuations of the charge on the N-δ1 atom in His-119.

FIGURE 5. Fluctuations of the charge on the Zn atom in the zinc-
water forms of HCAII.
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using electrostatic potential (ESP)-derived charges evalu-
ated as a function of the MD trajectory. Figures 2-5 repre-
sent the fluctuations of the charges on atoms H-δ2 in His-
119 (the hydrogen bound to C-δ2 in His-119), C-ε1 in His-
94, N-δ1 in His-119, and Zn during the last 70 ps of the
simulation on the zinc-water form of HCAII. Figure 5
clearly shows that the ESP-derived atomic charges of the
zinc ion vary substantially and that a static charge model
is inadequate for the modeling of systems with large
charge flux (e.g., metalloenzymes). The charges on select
atoms of the ligands also vary (see Figures 3 and 4), but
when they are not in direct (or “resonant”) contact with
the metal center (e.g., the hydrogen bound to the C-δ2 in
His-119ssee Figure 2), their ESP-derived charges do not

vary significantly. The use of a MM description is therefore
justified when atoms are far enough from the location
where the most important electronic changes occur. The
results obtained from this study clearly demonstrated the
strengths of using a QM/MM approach to describe the
energy, the structure, and the dynamics of a zinc protein.

3.2. Reactivity of Thermolysin. Recently, Antonczak
and co-workers focused on the reactive process of another
zinc protease: thermoysin.60 Like HCAII, thermolysin con-
tains only one zinc atom, which is essential for its catalytic
activity. This metal ion is bound to the enzyme by three
amino acid ligands: His-142, His-146, and Glu-166, the
fourth ligand being the enzyme substrate. In this paper,
the hydrolysis of a model peptide substrate (formamide)

FIGURE 6. Nonassisted and water-assisted hydrolysis mechanisms of formamide by thermolysin.
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by thermolysin was studied. Two mechanisms were con-
sidered, one involving only one water molecule (i.e., the
“nonassisted” mechanism) and the other involving two
water molecules (i.e., the “water-assisted” mechanism).
The semiempirical LSCF formalism was used by these
authors. The QM region was described by the AM1 Hamil-
tonian and included the zinc atom, the three amino acid
ligands, the formamide, and one or two water molecules.
The rest of the system, including the remainder of the
enzyme and the crystallographic water molecules, was
described using the AMBER force field. In contrast to the
previous example, the authors did not perform MD simu-
lations but “froze” the MM region while allowing the QM
part to move (e.g., EMM ) 0 in eq 2). This permitted the
computation of the second derivatives of the QM/MM
energy and allowed the location of transition states using
standard algorithms.

The reaction paths for both water-assisted and non-
assisted mechanisms are presented in Figure 6, and the
corresponding energy fluctuations are given in Table 1.
The first transition states (TS1T and TS2T), which cor-
respond to the insertion of water, were the rate-limiting
step for these reactions. An intermediate was observed for
each mechanism (I1′ and I2′), and these corresponded to
a state in which the peptide bond was partially broken.
Not surprisingly, Antonczak et al. found that the water-
assisted mechanism was preferred over the nonassisted
one. However, one of the most interesting parts of this
study was the use of the QM/MM approach to evaluate
the influence of the enzyme environment on the reactive
processes. Using eq 2, the term EQM/MM can be evaluated,
and, once evaluated, it can be used to determine whether
the enzyme facilitates the reaction.25 In this case, the
results indicated that thermolysin slightly destabilizes the
transition states for both reaction pathways. At first, this
is unexpected because one is trained to think that
enzymes decrease energy barriers in order to catalyze
reactions. But in this case, one has to remember that
formamide is only a model peptide and not the natural
substrate (i.e., thermolysin is not a “formamidase”). In
more recent work, Antonczak and co-workers showed that
thermolysin does, indeed, stabilize the transition states
during the hydrolysis of a natural substrate (e.g., the Gly-
Phe-Leu tripeptide).69

4. Perspectives
In this Account, we presented the basics of the QM/MM
methodology, and we highlighted the different approaches

available to solve the boundary problem associated with
studying enzymes with QM/MM Hamiltonians. Several
examples were given that demonstrate how powerful the
QM/MM approach is in describing the structure and
energetics of enzymatic systems. Nonetheless, the QM/
MM approach still needs to be improved in order to
become a highly reliable method that can be applied to a
wide range of problems. First, as pointed out earlier, a
comparison between all the existing QM/MM approaches
is still lacking, and it is not yet clear whether one approach
gives more reliable results than another (i.e., “link atom”,
LSCF, “connection atom”, etc.). Second, continued im-
provements in the QM level used and in the MM repre-
sentation will be required. For example, most of the
applications published so far have used semiempirical
methods for the QM region and fixed point-charge models
(i.e., nonpolarized) for the MM region. Significant im-
provements will be realized soon as the use of more
reliable ab initio and DFT theories becomes more com-
mon. Future use of force fields with polarizability and/or
charge-transfer properties will enhance our understanding
of the response of the MM region to the QM wave
function. Finally, use of new “linear scaling” methods70-73

should allow us to increase the QM region size without
negatively impacting the speed of the simulations.
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M. F. Combined AM1/MM3 computations on or-
ganic systems: the Diels-Alder reaction as a test
case. Chem. Phys. Lett. 1998, 296, 239-244.

(60) Antonczak, S.; Monard, G.; Ruiz-López, M. F.; Rivail,
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